____ **C.U.SHAH UNIVERSITY Summer Examination-2019**

Subject Name: Complex Analysis Subject Code: 5SC01COA1 Semester: 1 Date: 16/03/2019

Branch: M.Sc.(Mathematics) Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a)	Find the rectangular form of $z = \sqrt{2}\cos 510^\circ + \sqrt{2}\sin 510^\circ$.	(02)
	b)	Find the zeros of $\cos z$.	(02)
	c)	Define Entire function and give one example of it.	(02)
	d)	True/False: $f(z) = z^2 + 2$ is analytic everywhere.	(01)
Q-2		Attempt all questions	(14)
	a)	Find all n^{th} root of unity and hence find the sum and product of all the roots.	(06)
	b)	Prove that $\tan^{-1} z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right)$ and hence find the value of $\tan^{-1}(2i)$.	(06)
	c)	Find $\sqrt{-8+6i}$.	(02)
		OR	
Q-2		Attempt all questions	(14)
	a)	Define: $\log(x+iy)$ and find the real and imaginary part of $(\sqrt{i})^{\sqrt{i}}$.	(06)
	b)	Define: arg z and also find z if $\arg(z+2i) = \frac{\pi}{4}$ and $\arg(z-2i) = \frac{3\pi}{4}$.	(06)
	c)	Find real and imaginary part of $\sinh z$.	(02)
Q-3		Attempt all questions	(14)
	a)	State and prove necessary and sufficient condition for function to be an analytic.	(07)
	b)	If $f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$ is not differentiable at the origin although Cauchy-	(05)

Riemann equations are satisfied at origin.

c) Prove that every differentiable function is continuous function. (02)

OR Q-3 Attempt all questions (14)**a**) Suppose f is differentiable at z_0 and g is differentiable at $w_0 = f(z_0)$ then $g \circ f$ is (07)differentiable at z_0 and $(g \circ f(z_0))' = g'(f(z_0)) \cdot f'(z_0)$. Find the analytic function f(z) if $u - v = (x - y)(x^2 + 4xy + y^2)$. (05)b) c) Is $f(z) = \frac{z}{\overline{z}}$ an analytic? Explain it. (02)**SECTION – II** Attempt the Following questions (07)Q-4 State Morera's theorem. (02)a) Evaluate: $\iint_{C} \frac{1}{z^2 - 3z + 2} dz$, where C: |z| = 1b) (02)Find the residue of $f(z) = z^4 e^{\frac{1}{z}}$. (02)c) Which are the fixed points of $w = \frac{2z-3}{z+2}$? d) (01)Q-5 Attempt all questions (14)**a**) Evaluate $\int_{C} f(z) dz$ where $f(z) = \begin{cases} 4y, & \text{if } y > 0 \\ 1, & \text{if } y < 0 \end{cases}$ and C is the arc from z = -1 - i to (05)z = 1 + i of the cubical curve $y = x^3$. State and prove Cauchy's integral formula. (05)b) c) Integrate the function $f(z) = \frac{z+4}{z^2+2z+5}$ around the curve C: |z| = 3 traversed in (04)counter-clockwise direction. OR Q-5 Attempt all questions (14)**a**) Evaluate $\iint_{C} \frac{z^4}{(z+1)(z-i)^2} dz$; C is the ellipse $9x^2 + 4y^2 = 36$ by using Cauchy's (05)integral formula. **b**) Let $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n (a_n \neq 0)$ be a complex valued polynomial of (05)degree $n(n \ge 1)$ then there exist at least one complex root z_0 such that $P(z_0) = 0$. Find an upper bound for the absolute value of the integral $\int \frac{e^z}{z^2} dz$ where C is the (04)**c**) line segment *i* to 2.

Q-6 Attempt all questions

(14) a) Find all Taylor's and Laurent's series expansions for the function (05) $f(z) = \frac{7z2 + 9z - 18}{z^3 - 9z}$ about the point z = 0.

b) Evaluate
$$\iint_{C} \frac{2z+1}{(z+1)^{3}(z-1)} dz; \quad C: |z-1| = 2.5 \text{ by using Cauchy's residue theorem.}$$
(05)

c) Find the bilinear transformation which maps 0, 1, i onto 1+i, -i, 2-i respectively (04)and also find the image of |z| < 1.

OR

- **Attempt all Questions** Q-6
 - State and prove Taylor's theorem. a)

b) Evaluate:
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 1\right)^3}$$
 (05)

c) Evaluate:
$$\int_{0}^{2\pi} \frac{\cos\theta}{5 + 4\cos\theta} d\theta$$
(04)

(14)

(05)